# NET PHYSICAL SCIENCE (PS) SYLLABUS

NET PHYSICAL SCIENCE 2021 syllabus has been released. NET PHYSICAL SCIENCE 2021 syllabus designed for NET PHYSICAL SCIENCE Exam comprises two sections, General Aptitude,Life Science. Candidates by now can check the subject wise Detailed NET PHYSICAL SCIENCE syllabus

NET PHYSICAL SCIENCE

S. No PART 'A' (CORE)
1 Mathematical Methods of Physics: Dimensional analysis. Vector algebra and vector calculus. Linear algebra, matrices, Cayley-Hamilton Theorem. Eigenvalues and eigenvectors. Linear ordinary differential equations of first & second order,Special functions (Hermite, Bessel, Laguerre and Legendre functions). Fourier series, Fourier and Laplace transforms. Elements of complex analysis, analytic functions; Taylor & Laurent series; poles, residues and evaluation of integrals. Elementary probability theory, random variables, binomial, Poisson andnormal distributions. Central limit theorem.
2 Classical Mechanics: Newton's laws. Dynamical systems, Phase space dynamics, stability analysis. Central force motions. Two body Collisions - scattering in laboratory and Centre of mass frames. Rigid body dynamicsmoment of inertia tensor. Non-inertial frames and pseudoforces. Variational principle. Generalized coordinates. Lagrangian and Hamiltonian formalism and equations of motion. Conservation laws and cyclic coordinates. Periodic motion: small oscillations, normal modes. Special theory of relativityLorentz transformations, relativistic kinematics and mass-energy equivalence..
3 Electromagnetic Theory: Electrostatics: Gauss's law and its applications, Laplace and Poisson equations, boundary value problems. Magnetostatics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell's equations in free space and linear isotropic media; boundary conditions on the fields at interfaces. Scalar and vector potentials, gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors. Reflection and refraction, polarization, Fresnel 's law, interference, coherence, and diffraction. Dynamics of charged particles in static and uniform electromagnetic fields.
4 Quantum Mechanics: Wave-particle duality. Schrödinger equation (time-dependent and time-independent). Eigenvalue problems (particle in a box, harmonic oscillator, etc.). Tunneling through a barrier. Wave-function in coordinate and momentum representations. Commutators and Heisenberg uncertainty principle. Dirac notation for state vectors. Motion in a central potential: orbital angular momentum, angular momentum algebra, spin, addition of angular momenta; Hydrogen atom. Stern-Gerlach experiment. Timeindependent perturbation theory and applications. Variational method. Time dependent perturbation theory and Fermi's golden rule, selection rules. Identical particles, Pauli exclusion principle, spin-statistics connection.
5 Thermodynamic and Statistical Physics: Laws of thermodynamics and their consequences. Thermodynamic potentials, Maxwell relations, chemical potential, phase equilibria. Phase space, micro- and macro-states. Micro-canonical, canonical and grand-canonical ensembles and partition functions. Free energy and its connection with thermodynamic quantities. Classical and quantum statistics. Ideal Bose and Fermi gases. Principle of detailed balance. Blackbody radiation and Planck's distribution law.
6 Electronics and Experimental Methods: Semiconductor devices (diodes, junctions, transistors, field effect devices, homo- and hetero-junction devices), device structure, device characteristics, frequency dependence and applications. Opto-electronic devices (solar cells, photo-detectors, LEDs). Operational amplifiers and their applications. Digital techniques and applications (registers, counters, comparators and similar circuits). A/D and D/A converters. Microprocessor and microcontroller basics.Data interpretation and analysis. Precision and accuracy. Error analysis, propagation of errors. Least squares fitting.